

MAINSTREAMING SCIENCE, TECHNOLOGY & INNOVATION INTO DEVELOPMENT STRATEGY

- Korea's Experience and IDB's Strategy -

HYUNGHWAN JOO

Senior Advisor Inter-American Development Bank

August 23-24 – San Salvador, El Salvador

Outline

- Main Trends in Science & Technology
- Policy Challenges for LAC
- Building NIS: Korea's Experience
- IDB's Strategy

Developing countries will likely remain mired in poverty unless they can do what developed countries have done to achieve sustainable growth: incorporate science, technology and innovation into their economic strategies.

UN Millennium Project Taskforce on Science & Technology and Innovation, 2005

Main Trends (OECD)

Investment in knowledge has risen across OECD

- ➤ In developed countries, more than half of total investment is devoted to : R&D, education, software, design, marketing...
- Innovation accounted for 50% of US productivity growth in 90s.
- Innovation is a key driver of sustainable development, wealth creation and competitiveness
 - □ ROI: 50% or higher, over the long run. Higher for developing countries
 ROI on education and training: 7~ 8% per year
- (Input) Growing R&D intensity (R&D/GDP)
 Dominance of Business (in R&D funding/personnel)
 (Output) Rising patenting/S&T articles/Competitiveness

Investment in knowledge has risen across the OECD...

As a % of GDP, 2000

Main Trends (LAC)

- Low investment in knowledge, particularly in R&D
 - Countries in LAC spend 0.6% of GDP on R&D
 Total R&D (\$12 b.) < Korea (\$16 b., 2.6%), US (\$282 b., 2.7%)
 - ➤ R&D intensity has either decreased or leveled off (except for Brazil, T&T, Mexico)
- Predominance of Public Sector: low share of private funding in total R&D spending
 - ➤ Public to Private ratio: 3 : 7 (OECD), 7 : 3 (LAC)
 - ➤ The share of business R&D funding has declined (except for Brazil, Uruguay)

Main Trends (LAC)

Disconnect b/w university & PRIs and industry

- The public research is biased toward basic research
- Curiosity-driven rather than market-driven or problem-oriented
- Lack of "innovation culture" in firms / no channel for articulation.

Shortage of researchers

- ➤ Researchers per 1000 persons: **6~10** (OECD) vs. **0.7** (LAC)
- Low IT penetration rate
 - Low PC penetration, limited broadband connectivity, high access cost
- ⇒ Rising but still low patenting Growing technology gap Low competitiveness

Comparative Snapshot: Key Data

	OECD countries	LAC
R&D as % of GDP	2 ~ 3 %	0.6% (Brazil 1.0%)
Private Sector in R&D	60 ~ 75 %	30 %
Researchers per 1000	6 ~ 10	0.7 (Argentina 1.6)
Internet Users	50 ~ 70%	15%

TFP Has Not Been a Source of Growth for LAC Countries...

Annual TFP Growth

(Input) Low R&D investment has persisted... (R&D expenditure as a percent of GDP)

(Input) R&D mostly financed by the public sector... (R&D expenditure by source of financing)

(Input) Too few researchers for growing demand... (Researchers per 1000 labor force)

(Input) ICT penetration rate is growing but still low... (Internet users per 100 inhabitants)

(Output) A huge parenting gap between OECD and LAC... (Patents Granted by US patent Office)

(Output) Patents Granted by US PTO to LAC countries are increasing but still too low...

(Output) Global Competitiveness (2005-2006, WEF)

Country	Score	Rank out of LAC Countries	Rank out of 117 Countries
Chile	4.84	1	27
Argentina	4.09	2	54
Costa Rica	4.08	3	56
Brazil	4.08	4	57
Colombia	4.07	5	58
Mexico	4.07	6	59
El Salvador	4.05	7	60
Jamaica	4.03	8	63
Panama	4.00	9	65
Trinidad and Tobago	3.99	10	66
Uruguay	3.95	11	70
Peru	3.83	12	77
Venezuela	3.71	13	84
Ecuador	3.59	14	87
Dominican Republic	3.56	15	91
Guatemala	3.50	16	95
Nicaragua	3.48	17	96
Honduras	3.47	18	97
Bolivia	3.39	19	101
Paraguay	3.36	20	102
Guyana	3.27	21	108

Policy Challenges (LAC)

Beyond funding and performance, institutions and governance are increasingly important for innovation

Mainstreaming innovation policy

- Treat innovation as a strategic issue in development planning
- Links to strategic economic and social directions

Institutional development

- S&T/ Innovation policy and regulatory frameworks
- Database on S&T system
- Improve framework conditions (Competition(service), FDI, Financing(Venture Capital), IPRs)

Policy Challenges (LAC)

Public-Private linkage

- Stimulate R&D investment by industry
 - □ Policy mix (grants, loans, guarantees / tax incentives...)
- Use strategic PP partnerships for research
- Enhance the governance of public research
 - Greater stakeholders involvement in priority setting
 - Evaluation with implications for funding

Human resources development

- Access & quality (secondary / tertiary + vocational training)
 - □ Focus on building 21st century skills (IT, science & math)
- > Enhance mobility b/w public and private institutions
 - Attract foreign talent and return migration of expatriates

IT infrastructure

Paths to Innovation & Competitiveness

- There is no "one size fits all" model
 - Country strategies depend on initial conditions & resources
 - Strategies include building institutions, FDI, participation in value chains and applying innovation to traditional goods
- Look beyond regional model : cross modeling
 - ➤ IT development: Korean, Scandinavian, Irish, Indian, US models
- Develop indigenous capability & absorptive capacity of enterprises and labor force
 - build with acquisition, adaptation, improvement, innovation
 - Distinguish among objectives at different stages this is a multigeneration process
- Create competitive advantage
 - Chile salmon, Korea electronics, Ireland software

Building NIS: Korea's Experience

From 1980 to 2005, Korea's

- Total R&D expenditure increased by 60 fold:
 US\$ 0.4 billion (4m.(63)) ⇒ US\$ 24 billion
- R&D as % of GDP: 0.77% (0.25% (63)) ⇒ 2.99%
 Government / Private ratio: 64:36 (97:3(63)) ⇒ 24:76
- Researchers: $18,434 \Rightarrow 234,702$ (7.5 per 1000 employed)

Building NIS: Korea's Experience

Korea's NIS changed from

- Catch-up model through reverse engineering and imitation
- Stand alone & closed innovation system
- Input & supply-oriented innovation system

To

- Creative mode based on locally developed tech.
- Networked & open-mode innovation system
- Outcome & demand-oriented innovation system

1. Create a S&T Policy Coordinator

- Put in place consolidated legal / institutional framework(1967)
 - Enactment of Science and Technology Promotion Act
 - Creation of Ministry of Science and Technology / NSTC
- Key: improved coordination over S&T related policies
 - ☐ Power to plan, coordinate, evaluate S&T policies + Allocate
 R&D budget + Vice chair for NSTC
 - Minister level and upgrade deputy PM level later
 - ⇒ MOST as the central agency for inter-ministerial coordination of S&T policy and R&D activities
- Commitment to promotion of S&T from the presidency
 - Overcome resistance from existing ministries / Quarterly NSTC chaired by President / First minister served 12 years

2. Develop a vision

- Develop a strategic vision for S&T and integrate it into the Five-year Economic Development Plan
 - □ "Long Term S&T Development Plan (1967~1986)"
 - Set Goal, Strategies, Priority areas, Target for R&D (0.47~2.5%), Funding source
- Link S&T and education (manpower training) to an overall industrial development strategy
 - Select core technologies as next growth engine and concentrate nat'l R&D budget on them
- Encourage participation of key ministries (MOF, MOE, MIC...) in S&T policy making process from the beginning
 - Cross-fertilization of key personnel among related ministries

3. Buy in

- Establish a network (advisory council) among stakeholders to sustain policy dialogue
 - ☐ Industry, academia / PRIs, and government
- Start at the central level and expand by fields / regions
- Identify technology / manpower needs from the industry and channel them to university / PRIs / related ministries
 - ☐ Technology foresight, industrial policy directions...
- Hold an inter-ministerial / public-private joint meeting regularly chaired by President
 - ☐ Share vision, monitor progress and discuss next steps

4. Focus and concentration

- Identify priority areas where comparative advantage exists & most spillovers are expected and focus on these niche areas
 - Evaluate skill requirements, technology demand & firm capacity
- At early stages, ability to identify, absorb & adapt existing technology by licensing, FDI....
 - Cultivate skilled workers reflecting industrial development
 - □ Better linkage with industrial demand(Balance b/w liberal arts and science & engineering majors)
- Adapt / Streamline support systems
 - □ PPPs, tax incentives, public procurement, provision of guarantees / public / private venture capital, industrial clusters...

5. Framework for private-public partnership

- Establish an umbrella industrial R&D institution (KIST) and spin-off it into specialized sectoral institutions (ETRI, CRI...) (in accordance with evolving industry demand & policy goals)
- Foster strategic P/P research programs responding to socioeconomic demand, with strong industry participation (semiconductor: 4 mega D-RAM, cell phone: CDMA...)
- ➤ Industry presence on the boards of PRIs

 Preferential funding for proposals involving industry

 Preferential tax incentives for R&D program through PPP

 Joint use of research equipments and manpower exchange

 Licensing and spin offs of IPRs by PRIs

6. Join internet revolution decisively

- Develop and implement comprehensive strategies to promote IT infrastructure and improve IT regulatory framework
 - Secure access as well as connectivity
 - ☐ Provide cheaper & faster broadband access

Develop basic IT skills for all citizens

Deliver contents (e.g., internet based citizen service...)

- * e-government as a tool to develop IT software industry as well as to enhance transparency, efficiency & participation
- Twin track approach: ICT as a new growth industry + Applying IT-based innovation to traditional industries
 - ☐ Develop mechanism (e.g., Tech. dev't fund) for expanding credit, equity, guarantee for start-ups & simplify start-up process

IT industrial Development (Korea)

- At the initial stage, Gov't played a leading role as an enabler or a facilitator
- (Supply push) Expand wire/wireless telephone, Build up broadband network, invest in human resources & development of critical technologies such as TDX, CDMA (through PPP...)
 - effective policy framework for master plans, laws, funding mechanisms, organizational support
 - ☐ Informatization Promotion Act(1995), Cyber Korea 21(1999)
 - Informatization Promotion Fund
 - Ministry of Information and Communicatioon and NCA
 - Slogan to spread IT culture (Although our industrialization lagged, our digitalization will not.)

IT Industrial Development (Korea)

- (Demand pull) Liberalization and competition in telecom/broadband market encourage telecoms to main low tariffs via a reduction in cost
 - Provide low cost PC, free broadband access to all primary & secondary schools, internet training for 10 million people
 - e-government projects
- Strategic and focused
 - Which area to target: HW or SW
 - ☐ If SW, which niche market to target: on-line game, e-gov't, computer animation...
 - A precise roadmap with proper sequencing and pacing of core measures is key

IDB's Strategy: New framework for S&T

 Commitment of IDB leadership to strengthening Bank activities in the S&T and innovation area

New Organizational Setup

- Establishment of the new Sub-Department in charge of S&T, ICT and education
- High level S&T advisory Group to the President (in progress)

New Financing Tool : Korea Technology Fund

- Created by a contribution of US\$ 50 million from Korea
- Increase the flow of technical assistance

IDB's Response: Strategic Directions

Mainstreaming S&TI into country dev't strategies

- Through country dialogues & innovation policy assessment, identify policy priorities & funding requirements
- Employ convening power to stimulate dialogue among country policy makers and share best practices (Establishment of a Regional Policy Dialogue on S&T)

Emphasis on:

<Areas>

- Improvement of institutional and regulatory conditions
- Support to R&D / innovation investment projects by the private sector (notably in SMEs / in the context of innovation clusters)

IDB's Response: Strategic Directions

- ➤ Foster innovation collaboration b/w universities, PRIs & business through strategic programs responding to social needs (e.g., health, energy, housing & environment...)
- Adoption and diffusion of technologies, particularly ICT

<Approach>

S

- Differentiated approach based on needs of a particular country (e.g) Strengthening NIS in more developed countries vs. technological infrastructure (S&T policy framework, metrology, standard, IPRs...) and capacity building in less developed ones
- Regional approach
 - (e.g) sectoral / technological programs, database for researchers / S&T statistics / patent information...
- Stress poor & small countries

New Financing Tool: Korea Technology Fund

- Finance activities that promote S&T capacity and innovation through technical assistance
 - small-scale pilots and e-application projects
- Emphasis will be given to
 - lower income countries & those with weaker S&T capacity
 - e-applications, industrial development with strong technology and innovation components, institution building and strengthening, innovation through PPP
- Non-reimbursable, untied & no project ceiling

New Financing Tool: Korea Technology Fund

Grant recipients

- Borrowing member countries
 (Firms, educational institutions, NGOs and governments)
- Regional and sub-regional organizations

Target activities

- Activities that enhance S&T/ innovation capacity building (policy assessment(leading to action), feasibility study, institutional development, training(in engineering and IT), and adoption & diffusion of new technologies(e.g., alternative energy))
- > Activities that promote IT infra. & related e-applications
- ➤ Activities that identify and disseminate best practices (financing technological innovations, sustaining rural connectivity...)

Thank you

Hyunghwan JOO
Senior Advisor for Technology and Innovation &
Korean Technology Fund Program Coordinator
Inter-American Development Bank

hjoo@iadb.org